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Abstract
The purpose of this studywas to develop a predictivemodel based on plan complexitymetrics and
linac log-files analysis to classify the dosimetric accuracy of VMATplans. A total of 612VMATplans,
corresponding to 1224 arcs, were analyzed. All VMAT arcs underwent pre-treatment verification that
was performed bymeans of the dynamic log-files generated by the linac. The comparison of predicted
(byTPS) andmeasured (by log-files) integralfluences was performed using γ-analysis in terms of the
percentage of points with γ-value smaller than one (γ%) and using a stringent 2%(local)/2mm
criteria. This γ-analysis was performed by a commercial software LinacWatch. The action limits (AL)
were derived from themean values, standard deviations and the confidence limit (CL) of the γ%
distribution. A plan complexitymetric, themodulation complexity score (MCS), based on the
aperture beam area variability and leaf sequence variability was used as input variable of themodel. A
binary logistic regression (LR)model was developed to classifyQA results as ‘pass’ (γ%�AL) or ‘fail’
(γ%<AL). Receiver operator characteristics (ROC) curves were used to determine the optimalMCS
threshold toflag ‘failed’ plans that need to be re-optimized. Themodel reliability was evaluated
stratifying the plans in training, validation and testing groups. The confidence and action limits for γ%
were found 20.1% and 79.9%, respectively. The accuracy of themodel for the training and testing
dataset was 97.4% and 98.0%, respectively. The optimalMCS threshold value for the identification of
failed plans was 0.142, providing a true positive rate able toflag the plans failingQAof 91%. In clinical
routine, the use of thisMCS thresholdmay allow the prompt identification of overlymodulated plans,
then reducing the number ofQA failures and improving the quality of VMATplans used for
treatment.

1. Introduction

Volumetric modulated arc therapy (VMAT) is a rota-
tional form of intensity-modulated technique (IMRT),
in which highly conformal doses can be realized by a
complex interplay between the speed of gantry rotation,
the multileaf collimator (MLC) shape, and the linac
dose rate [1]. The resulting improvement in target
volume conformity and normal tissue sparing resulted
in significant reduction acute and late toxicities [2].

Modern planning procedures use complex advanced
algorithms for dose optimization and calculation and are
vulnerable to several uncertainty sources, including small
fields modelling, dose calculation accuracy, tongue-and-
groove effect and interleaf leakage and transmission [3, 4].

The solution space is highly degenerate, meaning
that amultitude of different output plansmay produce
similar calculated dose distributions. In some anato-
mical sites, the complex relations between target
volumes and organs-at-risk and the complexity of
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prescribed dose distributions require highly modu-
lated plans thatmay affect the delivery accuracy.

Due to this increased complexity, patient-specific
quality assurance (PSQA) has been strongly recom-
mended by various professional organizations [5, 6],
although the debate on the need to performdosimetric
measurements for each patient is still open [7]. PSQA
consists in individualized measurements, usually per-
formed before the first treatment fraction, using a
large variety of phantoms and dosimetric systems,
including two or three-dimensional arrays of ioniz-
ation chamber of diodes and gafchromic films, and
can be very time-consuming.

Because the agreement between calculated and
measured complex dose distributions is expected to
decrease as planmodulation increases, a large number
of metrics have been defined using plan and machine
properties (fluence, MLC aperture, position and dis-
placement, gantry speed and dose rate variations,
number of monitor units MU) to quantify plan com-
plexity [8]. One of these metrics, the modulation
complexity score (MCS), was initially found highly
sensitive to delivery accuracy for both IMRT and
VMAT techniques [9, 10]. Successively, several studies
[11–13], focused on the predictivity power of these
complexity metrics for dose delivery accuracy, pro-
vided discordant results and translated in lack of con-
sensus and guidelines.

Recent approaches using machine learning meth-
ods (as support vector machine, gradient boosting,
random forest, Poisson regression, regression tree
analysis and deep learning networks) are reporting
preliminary success for the prediction and classifica-
tion of IMRT/VMAT plan quality [14] and delivery
accuracy [15, 16].

On the other hand, machine delivery log‐file ana-
lysis has been introduced as an alternative, effective
and efficient approach for PSQA of IMRT and VMAT
delivery accuracy [17–20]. Log-files are dynamic tem-
poral tracking files, written in a proprietary format,
containing a high frequency recording of the main
parameter’s characteristic of the linac during irradia-
tion. In our clinic, we implemented a dedicated soft-
ware (LinacWatch, Qualiformed, La Roche-sur-Yon,
FRA), able to decrypt the linac log-files and to generate
an irradiated fluence map that can be compared with
the predicted one in terms of gamma-index pas-
sing rate.

The aim of this research was to evaluate the ability
of the modulation complexity score, together with
linac log-file analysis, to successfully predict plan deli-
verability in a large plan population. Because of the
widespread implementation of VMAT in clinical prac-
tice, a successful prediction of patient-specificQA out-
comes should result in a significant increase in PSQA
efficiency.

2.Materials andmethods

2.1. Treatment plans
A total of 612 consecutive treatment plans were
analyzed during 2021. All plans were optimized in a
VMAT ‘dual-arc’ modality for a total of 1224 VMAT
arcs measurements. Plans corresponds to a large
number of clinical sites treated in our departments
with different complexity, including brain, head and
neck, lungs, oesophagus, breast, abdomen, pancreas,
prostate, pelvis, and spine tumors.

All plans were generated using the Autoplanning
module implemented into Pinnacle3 treatment plan-
ning system version 16.2 (Philips, Medical Systems,
Fitchburg, WI). This is a template-based planning
engine that uses an iterative approach of progressive
optimization that mimic all the steps of experienced
and skilled planners, as well described in literature
[21]. All dose distributions were calculated using the
collapsed cone convolution algorithm with a dose
calculation grid of 2.0 mm. Each treatment was deliv-
ered by one of the two matched VersaHD linear accel-
erator (Elekta, Crawley, UK), equipped with the high-
definition Agility multileaf collimator (160 leaves with
0.5 cm length at isocenter).

2.2. The linacwatch software
The LinacWatch software (Qualiformed, La Roche-
sur-Yon, FRA) analyzed the dynamic log-files gener-
ated by linacs following the delivery of each radiation
beam in IMRT or VMAT treatments. It allows an
accurate verification in real time of the compliance of
the linac performance during the treatment session
with that scheduled by the treatment planning system,
covering the position of each moving leaf of the MLC,
the position of the jaws, theMUnumber, the delivered
integral fluence, the gantry and collimator rotation
angles and the beam off lags. For an Elekta VersaHD
linac, all aforementioned data are recorded and
transferred to the LinacWatch every 250 ms. Linac-
watch is able to calculate the integrated fluence, i.e. the
MU delivered per unit of integrated surface over the
total duration of the radiation session) at 100 cm from
the radiation source in a very short time (less than a
second). This calculation is carried out at each control
point of the log-file and RT-plan Dicom file from the
leaves position and the MU delivered; then the
integrated fluence is calculated by LinacWatch by
‘painting’ the intensity corresponding to the difference
inMUdelivered between a given control point and the
preceding one. In addition, LinacWatch directly
supplies the modulation complexity score (MCS), as
explained in the next section.

Figure 1 shows the LinacWatch graphic interface
reporting (a) the calculated fluence of treatment plan-
ning system, (b) the obtained fluence from log-files
analysis, (c) the fluence comparison and (d) the histo-
gramof γ-index values.
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2.3. Themodulation complexity score (MCS)
The plan complexity was assessed using the Modula-
tion Complexity Score, MCS, originally introduced by
McNiven et al [9]. MCS was initially designed for step-
and-shoot treatments and it was later adapted by Masi
et al [10] to VMAT treatments. This score characterises
thefluencemodulationwith two parameters:

– the aperture area variability, AAV, that repre-
sents the variability in the shape of segments, i.e.
the difference between leaf pair apertures for any
segment compared to themaximum leaf separa-
tion in the beam, defined as:
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where pi is the coordinate of the ith leaf position, pmax

is the maximum distance between positions for a
givent leaf bank, summed over all control point and N
is the number of leaves in the bank.

TheMCS for an arc is then the product of LSV and
AAV weighted by the relative number of monitor
units:
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where MUcpi,i+1 indicates the MUs delivered between
two successive control points (cpi and cp(i+1)).

This definition considers that during a VMAT arc,
MUs are delivered continuously between adjacent
control points and therefore, the computation of the

Figure 1.Computer screen showing the LinacWatch user interface for log-files analysis. The screen is subdivided in four areas. From
the left: (a) the calculated fluence of treatment planning system, (b) the obtained fluence from log-files analysis, (c) thefluence
comparison and (d) the histogramof γ-index values.
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MCS must consider the product of the mean values
between adjacent control point of LSVcp and AAVcp.
The product is then weighted by the relative number
of monitor units delivered between two consecutive
control points and then summed over all CP in the arc.

From these definitions, the MCS score uses a fixed
range from 0 to 1, where the MCS is 1 for a simple
unmodulated field and it approaches 0 for complex,
highlymodulated fields.

2.4. Pre-treatment verification andγ-analysis
The comparison of plan predicted and log-files
integral fluences was performed using γ-analysis in
terms of the percentage of points with γ-value smaller
than one (γ%), using a stringent 2%(local)/2 mm
criteria.

Following the recommendations of the AAPM
Task Group No. 218 document [5], the action limits
(AL) were derived from the mean values and standard
deviations of γ%,providing the confidence limit (CL):

= - + sCL 100 mean 1.96( )

Then, the γ%of each plan is requested to be higher
thanAL=(100−CL).

QA results with γ% less than or equal to AL are
defined as ‘failed’ plans, whereas γ%values larger than
AL are defined as ‘pass’ plans.

2.5. Test case
In order to better understand the underlying effect of
the linac delivery capability, we performed a more in-
depth analysis on a representative prostate case. This
case was optimized by six different plans with increas-
ingly tighter constraints on rectal sparing (the main
organ-at-risk), dose gradient and MLC motion para-
meters to force an increase of plan complexity (i.e. a
decreased of MCS values). In particular, rectal mean
doses and the volume of rectum receiving 50Gy and 60
Gy were progressively reduced, while at the same time
the requests for increasingly steep dose gradients have
been accentuated. All plans had the same dosimetric
objectives on the target volume so that they can be
considered clinically effective. The relationship
betweenMCS and γ%was then investigated.

2.6.Modelling and statistical analysis
The overall dataset was split into a training and
validation set used for model development and cross-
validation and a testing set used for evaluation. The
training/validation and testing set included 979 and
245 arcs respectively (i.e. 80%/20% split). To ensure
that the testing set was representative of the whole
population of target values (γ%), the dataset was split
using a stratified technique based on the distribution
of γ%.

A logistic regression analysis was performed to
model the probability of predicting γ% using the MCS
metric as input variable. Logistic regression is a classical
algorithm that is usually used for binary classification

tasks. Thismodel calculates the classmembership prob-
ability for one of the two categories in the dataset (yi= 0
or 1)using a logistic equation:
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The left-hand side is termed the logit, i.e. logistic

unit, and β are the regression coefficients (β0 and β1
are also known as intercept and rate parameters,
respectively). The formula illustrates that the prob-
ability of the dependent variable of an interested out-
come is equal to the value of the logistic function of the
linear regression expression. Because the value of the
linear regression expression can vary from negative to
positive infinity, after transformation, the resulting
expression for the probability pi ranges between 0
and 1.

The best parameter estimates are the ones that
maximize the likelihood of the statistical model actu-
ally producing the observed data:
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Llog:

å b b

=

=- - + + +b b+e x

L ln L

N ln 1 yx
i

log

1

N

i 0 1
i0 1

( )

[ ( ) ( · )]( · )

whereN is the size of the sample.
In order to avoid overfitting, the logistic loss func-

tion wasmodified adding a penalty term, the L2 norm,
which effectively shrinks the estimates of the coeffi-
cients toward zero. The new loss function is:

ål b+Llog
1

p

j
2

where j is the number of coefficients in themodel. This
penalized loss function is also called ‘Ridge regression’.
The optimal value of the regularization parameter λ
was determined through 10-fold cross-validation in
the training set.

The goodness of the logistic regressionmodelfit was
evaluated by the Hosmer–Lemeshow test. Specifically,
this test calculates if the observed event rates match the
expected event rates in population subgroups.

Following the suggestions of Carlone et al [22],
receiver operating characteristic (ROC) curves were
used to determine an unbiased method to set thresh-
old criteria. Plans with a MCS value below a given
threshold and γ% below AL (i.e. failing pretreatment
QA) are true-positive (TP). Similarly, false‐positive
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plans (FP) are defined as the plans with a MCS value
less than a given threshold value, but a γ% above AL
(i.e. passing the QA). Plans with MCS over the thresh-
old and passing QA are a true-negative (TN) while
plans with MCS larger than the threshold and failing
QAprocedures are false negative (FN).

The classification performances are evaluated by
calculating the sensitivity, specificity and accuracy as
following:

=
+
TP

TP FN
Sensitivity 100·

=
+

TN

TN FP
Specificity 100·

=
+

+ + +
TP TN

TP TN FP FN
Accuracy 100·

In this context, the sensitivity of the test is its abil-
ity to determine the ‘failed’ plans correctly. The speci-
ficity of the test is its ability to determine the ‘pass’
plans correctly. Lastly, the accuracy of the test is its
ability to differentiate failed and pass plans correctly.

The most optimal threshold for MCS is identified
as the value that will optimize the true positive fraction
and the true negative fraction. The diagnostic perfor-
mance is evaluated by the area under the ROC curve
(AUC). The closer the AUC is to 1.0, the better its per-
formance; the closer the AUC is to 0.5, less useful the
diagnostic test is.

3. Results

3.1.γ%andMCSdistributions
Table 1 shows the overall results of QA procedure. A
Shapiro-Wilk test was performed to test the normally
of γ% and MCS values. Both γ% and MCS data
distributions were found to be normally distributed
in both training and testing dataset (p<0.05). The
mean±SD of γ%were 87.9%±4.1% and 87.8%±
4.0% in the training and testing datasets, respectively;
minimum values were 67.3% and 69.7% respectively.
There was no significant difference in γ% between the
training and testing datasets (p = 0.593). The con-
fidence and action limits were found 20.1% and
79.9%, respectively. For simplicity, a value of 80%was
adopted for γ% action limit. The mean±SD of MCS
were 0.243±0.086 and 0.236±0.081 in the training

and testing datasets, respectively; minimum values
were 0.078 and 0.077. No significant difference in
MCS distributions was found between the training
and testing datasets (p= 0.253).

Figure 2 presents the scatter plot of the correlation
between γ% and MCS for the training and testing
datasets.

Figure 3 presents the scatter plot of γ% against
MCS for the single prostate test case and the dose-
volume histograms for the prostate (PTV) and the rec-
tum obtained after six different optimization cycles
with increasingly tighter constraints on rectal sparing
and dose gradient (to force an increase of plan com-
plexity) but with the same dosimetric objectives on the
target volume. A strong correlation between the two
variables was observed (R2=0.83).

Figure 4 reports the γ%andMCS values obtained by
LinacWatch for different anatomical sites and techniques.
The mean±SD for γ% was 88.1%±3.0%, 84.7%±
4.3%, 88.2%±2.9%, 87.2%±3.8%, 88.8%±3.8%
and 94.3%±3.3% for anorectal, head-neck, prostate,
gynaecologic, brain and stereotactic body treatments
(SBRT), respectively. Similarly, the mean±SD for MCS
was 0.235±0.077, 0.191± 0.052, 0.239±0.071,
0.224±0.069, 0.279±0.071 and 0.444±0.080 for
anorectal, head-neck, prostate, gynaecologic, brain and
SBRT, respectively. A Kruskal-Wallis test reported sig-
nificant differences among the different groups (p<
0.001). The post-hoc test showed that these differences
are statistically significant when the head-and-neck and
SBRT plans are compared to others groups. Head-and-
neck plans reported the lower agreement for γ%, with
8.2%of plans below the action limit of 80% (14 plans out
of 171). Gynaecological and brain tumours sites reported
1.8% (3 out 167) and 0.8% (1 out 118) of plans below the
80%action limit.

All anorectal, prostate and SBRT plans were con-
sidered optimal for dosimetric pre-treatment pur-
poses. In particular, despite the stringent 2%(local)/2
mm criterion, SBRT plans reported a very high agree-
ment between predicted andmeasured fluences (mean
γ% of 94.3%), due to their low degree of modulation,
as expressed by the high values of MCS (mean MCS
of 0.444).

Table 1.Results of plan complexity and patient-specificQAwith 2%(local)/2mm γ-criteria.

Metric Training dataset Testing dataset

Mean±SD 0.243±0.086 0.236±0.081
Range 0.078 – 0.565 0.077 – 0.541

γ%

Mean±SD (%) 87.9±4.1 87.8±4.0
Range (%) 67.3–99.1 69.7–98.0

Number of failed plans (N) 43 12
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3.2. Logistic regression andROCcurves
The performance of logistic regression models are
reported in figure 5. The Hosmer-Lemeshow test
reported p-values of 1.000 and 0.872 in the two
datasets, meaning that the logistic regression models
provided an optimal fit.

The same values of 0.130 for the MCS metric was
identified in both training and testing datasets as the
threshold corresponding to a probability of 50% of
observing a ‘failed’ plan. In other words, according to
this mathematical model, plans with MCS values less
than 0.130 have a much higher probability to fail pre-
treatmentQA.

However, the value of particular interest is the false
positive rate (FP), i.e. the number of plans classified as
‘pass’ by the model whereas they should be classified as

‘failed’ plans. Since the false positive rate ismore impor-
tant than false negatives, the model was tuned in order
to obtain larger specificity at the cost of lower sensitivity.

Then, new thresholdMCS values of 0.142 (CI95%:
0.136–0.152) and 0.142 (CI95%: 0.133–0.159) were
considered in the training and testing datasets by the
probability analysis to best discriminate the failed
plans. Table 2 reports the results as confusion matri-
ces. These are tables used to describe the performance
of a classification model on a set of test data for which
the true values are known. They are usually applied to
binary classification in the form of 2×2 tables, repre-
senting the counts from predicted and actual values,
i.e. the number of negative examples correctly classi-
fied (True Negative), the number of positive examples
classified accurately (True Positive), the number of

Figure 3. (a) Scatter plot of γ%at 2%(local)/2mmagainstMCS for six plans of a representative prostate case optimizedwith
increasingly tighter constraints on rectal sparing and dose gradient (fromP1 to P6), and (b) dose-volume histograms for the planning
target volume (PTV) and the rectum for the six different plans.

Figure 2. Scatter plot of γ%againstMCS. Planswith γ%above 80%are those passingQApretreatment verification. Black and red dots
refer to planswithin the training and the testing datasets, respectively.
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actual negative examples classified as positive (False
Positive) and the number of actual positive examples
classified as negative (FalseNegative).

The optimal value of the regularization parameter
λ minimizing the 10-fold cross-validation error
was 0.025.

For 2%(local)/2mm γ%classification using 80% as
action limit, the sensitivity, specificity and accuracy of
the model for the training dataset were 95.3%, 97.5%
and 97.4%, respectively. Similarly, the sensitivity, speci-
ficity and accuracy of the model for the testing dataset
were 91.7%, 98.3% and 98.0%, respectively. In part-
icular, this means that with a threshold of 0.142, the

MCS score correctly flagged more than 90% of plans
that failed pretreatment PSQA,while incorrectlyflagged
1.6%ofplans that passedpretreatment verification.

Figure 6 depicts the ROC curves generated by
varying theMCS threshold and plotting the true-posi-
tive rate versus the false-positive rate. The AUC was
0.996 and 0.978 for the training and testing datasets,
respectively.

4.Discussion

In this study we demonstrated that log files-based
gamma passing rates can be predicted with high

Figure 4.Box-plots depicting the γ% (leftfigure) andMCS (right figure) values obtained using LinacWatch for various anatomical
sites and techniques. The central linemarks themedian, the edges of the box are the 25th and 75th percentiles, thewhiskers extend to
the adjacent values, which are themost extreme data values that are not outliers, and the circles represent the outliers.

Figure 5. Sigmoid curves obtained by logistic regression analysis plotting γ%againstMCS for (a) training and (b) testing datasets.
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accuracy using a logistic regression model. This
approach is particularly advantageous because the
dosimetric inaccuracy of a VMAT plan delivery may
be accurately anticipated without the need of time-
consuming dosimetric measurements. Therefore,
given the widespread use of VMAT in clinical practice,
a successful prediction of potential failures in patient-
specific QA may translate in a significant increase in
QA efficiency. For example, if a specific plan is unlikely
to pass PSQA after gamma passing rate prediction, its
plan complexity may be decreased during the optim-
ization process in order to improve deliverability.
Unacceptable plans could then be potentially removed
‘a-priori’, avoiding treatment delays due to the failure
of VMATQA.

This strategy may be highly beneficial in (a)
resource-constrained nations, where machine time is
often not available for PSQA, (b) after the imple-
mentation of adaptive radiotherapy techniques, where
plans must be modified while the patient is still on
treatment table or (c) in critical logistic conditions as
the actual COVID-19 pandemic, where clinical and
dosimetric workflows are deeply altered to reduce
risks [23].

The logistic regression model developed in the
present study for the ‘a-priori’ prediction of PSQA
failure reported a very high accuracy >0.95 at 2%-2
mm in both training and testing datasets. Moreover,
an optimal threshold was defined for MCS: a value of
0.14 was able to flag ‘failed’ plans, i.e. unacceptable
plans that need to be re-optimized.

As shown in figure 2, a strong correlation between
gamma passing rate and the MCS metric was found.
This means that the heavy increase of complexity of a
VMAT plan may impact negatively the actual dose
delivered to patient. This is a critical argument because
the predictivity of complexity metrics of dose delivery
accuracy is still today debated, with discordant results
translating in lack of consensus and guidelines. Agnew
et al [11] used the VMAT PSQA results from 711 plans
to validate the ability of a complexity metric to predict
plan deliverability, reporting a true positive rate for
correctly identifying plans failing PSQA of 44% and a
false-positive rate was 7%. Nguyen et al [24] evaluated
VMAT complexity metrics as a means of predicting
phantom‐based measurement results for treatments
delivered on a Varian TrueBeam linacs. The authors
reported a moderate correlation of MCS to gamma

Table 2.Confusionmatrices used to describe the performance of the LRmodel for the
γ%classification, for both the training and the testing datasets.

Training dataset

from \ to Fail (Predicted) Pass (Predicted) Total % correct

Fail (Actual) 41 2 43 95.3%

Pass (Actual) 23 913 936 97.5%

Total 64 915 979 97.4%

Testing dataset

from \ to Fail (Predicted) Pass (Predicted) Total % correct

Fail (Actual) 11 1 12 91.7%

Pass (Actual) 4 229 233 98.3%

Total 15 230 245 98.0%

Figure 6.ROCplots of sensitivity versus (1-specificity) for the training (black line) and testing (red line) datasets. The diagonal line
with AUCof 0.5 represent test whose outcome is not significantly different than a randomguess.
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passing rate, with ROC analysis achieving a 60% true
positive rate and a 9% false‐positive rate to correctly
identify complex plans. Masi et al [10] evaluated the
effect complexity indexes on 142 VMAT dosimetric
accuracy, reporting a high correlation between MCS
and gamma index passing rates. On the contrary,
Glenn et al [13] failed to report any correlations in
evaluating different complexity metrics, including
MCS, for 343 irradiations on an anthropomorphic
head-and-neck phantom, comprising both IMRT and
VMAT techniques. The authors reported weak corre-
lations, limiting the predictive utility in assessing plan
performance in terms of complexity metrics. Lastly,
Xia et al [25] analysed the relationship between MCS
and gamma pass rates for a total of 275 stereotactic
radiosurgery and stereotactic body radiotherapy cases,
reporting no conclusive quantifiable correlation
betweenMCS gammapassing rate.

The results of our study highlighted that the MCS
plan complexity metric has a strong impact on gamma
passing rate, in agreement with the results obtained by
Masi [10] and Agnew [11]. This is probably due to the
fact that all of the data have been collected in the same
institution, from two dosimetrically matched ‘twins’
LINACs and generated with the Autoplanning optim-
ization engine. This lastmodule demonstrated amajor
ability to reduce intra and inter-planner planning
variability with respect to manual planning [18]. All
these aspects had an impact on reducing data collec-
tion andQAprocedure variability.

This study differs from previous studies for two
main aspects. First, this study employed log-files ana-
lysis to predict pre-treatment QA results instead of
phantom-based measurements. This way, the pre-
dicted results are not affected by the well-know varia-
bility due to the impact of PSQA measurements in
terms of phantoms and dosimetric systems. A study
performed by Hussein et al [26] evaluated the impact
of different commercial dosimetric systems for IMRT
and VMAT PSQA on the accuracy of γ-analysis
results. The results shown that using the same pass-
rate criteria, the different devices and software combi-
nations exhibit varying levels of agreement with the
predicted γ analysis. Moreover, the tightening the
gamma criteria increased measurement variability
among the differentQA instruments, with variances in
mean and minimum percent up to 15% at 2%/2 mm.
This is a crucial point because the accuracy for the pre-
diction of γ% significantly worsens with more strin-
gent criteria for γ-index analysis. Several studies
[27, 28] have clearly shown that the widespread used
3%/3 mm criteria is insensitive in detecting clinically
relevant errors. These authors suggested a retirement
of the 3%/3mm criteria as a primarymetric of perfor-
mance, and the adoption instead of tighter tolerances.
Therefore, from this point of view, all predictive mod-
els for PSQA results should be trained using tighter
criteria. In this study we reported that the use of log-
files analysis for PSQA purposes may overcome the

limitations of phantom-based systems, allowing the
adoption of 2%(local)/2 mm criteria that is more
effective in evaluating the accuracy of dose delivery
[27, 28]. Obviously, it is very difficult to achieve an
appealing passing rate (i.e. >90%) using 2%(local)/2
mm criteria. However, the spread continuum of eva-
luation results (rather than a cluster next to the max-
imum 100% value) provide a more useful statistical
backdrop tofine-tune the system.

In addition, our analysis reported significant dif-
ferences among different anatomical sites in terms of γ
% and MCS. In particular, head-and-neck plans
reported the lower MCS values and the lower agree-
ment for γ%,with 8.2%of plans below the action limit
of 80%. This is an expected result due to the major
planning challenges for this site, where it is difficult to
manage the compromise between tumours irradiation
and sparing of healthy tissue. In this case, while the
gross and microscopic diseases must be adequately
irradiated to doses sufficient for tumour control, a
large number of adjacent radiosensitive organs-at-risk
must be spared as much as possible to avoid serious
long-term sequelae. Therefore, this complex trade-off
between competing priorities require increasingly
complex plans, i.e. plans with low MCS values [29].
On the other hand, SBRT plans are usually optimized
for small convex-shaped lesions that do not require
hard constraints for fluence modulation, then trans-
lating in lessMLCmotion complexity and higherMCS
values.

In the future, a promising application of these pre-
dictive models for QA accuracy will be their direct
integration into the treatment planning optimization
stage. This way, new ‘QA-based’metrics could be used
in real-time by the optimizer engine to penalize the
solutions that predicts lower QA results. This is an
ongoing line of research, and a few investigators are
today developing optimization algorithms with the
aim to decrease the plan modulation complexity dur-
ing the VMAT planning optimization process without
affecting plan quality [30].

A few limitations of this study should be high-
lighted. As also reported in other studies [31, 32], the
number of failing plans is usually very small and this
translates in an unbalanced data distribution in the
model training. In this study, we collected 43 and 12
VMAT arcs that failed pretreatment PSQA (i.e. with
γ%<80% at 2%/2 mm) in the training and testing
datasets, respectively. Although small, this number
should guarantee the prediction accuracy of the
model. In any case, to increase the number of failed
plans in the training dataset, a multicentric collabora-
tive research is encouraged. Secondary, our model was
developed using treatment plans from the same insti-
tution and all generated by the same optimization
module (Pinnacle Autoplanning) for two dosime-
trically matched Elekta VersaHD linacs. Therefore,
our model may not automatically apply to other insti-
tutions using different equipments. A future study is
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needed to evaluate the congruence of ourfinding using
different TPS, linacs and QA devices. Thirdly, the
LinacWatch software calculates an integrated fluence,
i.e. a fluence integrated over the whole arc, which may
potentially mask small delivery errors. Therefore, we
adopted a stringent 2%(local)/2 mm gamma in order
to increase the sensitivity and to partially compensate
this effect. Moreover, in the present study we used a
stringent 2%(local)/2 mm γ-criteria to evaluate the
VMAT PSQA. The use of different γ-criteria (i.e. the
widespread used 3%/3 mm) in other institutions may
limit the applicability of our model because gamma
pass rates are different when different γ-criteria
are used.

Lastly, it must be underlined that the present strat-
egy for patient-specific QA could only be imple-
mented based on the assumption that accurate and
adequate TPS and linacQA are performed consistently
and continuously.

5. Conclusion

In conclusion, we investigated the ability of a pre-
dictive model based on the modulation complexity
score and log-files analysis for classification of VMAT
patient-specific QA results. A logistic regression was
able to accurately predict VMAT PSQA failure results,
correctly flagging more than 90% of plans that failed
pre-treatment PSQA at 2%(local)/2 mm gamma
criteria. This predictive model allows the prompt
identification of overly modulated plans, then redu-
cing the number of QA failures and improving the
quality of VMATplans used for treatment.
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